Course Title: $8^{\text {th }}$ Grade Math
Board Approval Date: 07/2018
Credit / Hours: NA
Reviewed Annually
Course Description:
This course focuses on mastery of the PA Core Standards for 8th Grade Math and incorporates the Assessment Anchors and Eligible Content. As students progress through this course, they will learn real numbers, solving one variable equations, graphing two variable equations, geometric transformations, Pythagorean Theorem, linear functions, data analysis, and factoring. Integrated into every lesson are rigorous applications of the PA Core Standards to prepare students to earn a Proficient or Advanced score on the 8th Grade PSSA.

Learning Activities / Modes of Assessment:

- Large Group Instruction
- Collaborative Learning
- Checklists / Videos of Instruction for Asynchronous Work
- Diagnostic Assessments (CDT)
- AimsWeb Tests
- Quizzes Within Each Unit
- Unit Tests

Instructional Resources:

- iPad, Teacher Macbook
- Teacher Made Resources Aligned to PA Core Standards for $8^{\text {th }}$ Grade Math
- Various internet resources and iPad apps including but not limited to: Desmos, Doceri, Padlet, Khan Academy, IXL Math, Study Island

Course Pacing Guide

Course: $8^{\text {th }}$ Grade Math
Course Unit (Topic)

1. Real Numbers
2. One Variable Equations
3. Two Variable Equations
4. Geometric Transformations
5. Pythagorean Theorem
6. Functions
7. Data Analysis
8. Factoring

DAYS TOTAL

Length of Instruction (Days/Periods)
20 days
23 days
40 days
15 days
11 days
18 days
13 days
23 days

163 Days

KNOW:	UNDERSTAND:	DO:
Rational Number	How to apply concepts of rational and irrational numbers as well as represent and use expressions and equations to solve problems involving radicals and integer exponents.	M08.A-N.1.1.1 Determine whether a number is rational or irrational. For rational numbers, show that the decimal expansion terminates or
Terminating Decimal		repeats (limit repeating decimals to thousandths).
Repeating Decimal		M08.A-N.1.1.2 Convert a terminating or repeating decimal to a rational number (limit repeating decimals to thousandths).
Irrational Number		M08.A-N.1.1.3 Estimate the value of irrational numbers without a calculator (limit whole number radicand to less than 144). Example: $\sqrt{ } 5$ is between 2 and 3 but closer to 2 .
Algebraic Expression Algebraic Equation		M08.A-N.1.1.4 Use rational approximations of irrational numbers to compare and order irrational numbers.
Exponent		M08.A-N.1.1.5 Locate/identify rational and irrational numbers at their approximate locations on a number line.
Coefficient		M08.B-E.1.1.1 Apply one or more properties of integer exponents to generate equivalent numerical expressions without a calculator (with
Scientific Notation		final answers expressed in exponential form with positive exponents). Properties will be provided.
Square Root		M08.B-E.1.1.2 Use square root and cube root symbols to represent solutions to equations of the form $\mathrm{x}^{2}=\mathrm{p}$ and $\mathrm{x}^{3}=\mathrm{p}$, where p is a
Perfect Square		positive rational number. Evaluate square roots of perfect squares (up to and including 122) and cube roots of perfect cubes (up to and
Cube Root		including 53) without a calculator. Example: If $x^{2}=25$ then $x=$ $\pm \sqrt{25}$.
Perfect Cube Absolute Value		M08.B-E.1.1.3 Estimate very large or very small quantities by using numbers expressed in the form of a single digit times an integer power of 10 and express how many times larger or smaller one number is than another. Example: Estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9} and determine that the world population is more than 20 times larger than the United States' population.
		M08.B-E.1.1.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Express answers in scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology (e.g., interpret 4.7EE9 displayed on a calculator as $4.7 \times$ 10^{9}).

Name: Unit 1 - Real Numbers
Grade: $8^{\text {th }}$

Course/Subject: Math
School District: Central Columbia

Key Learning: Students will be able to apply concepts of rational and irrational numbers as well as represent and use expressions and equations to solve problems involving radicals and integer exponents.

Unit Essential Question: How do you apply concepts of rational and irrational numbers as well as represent and use expressions and equations to solve problems involving radicals and integer exponents?

Concept: Rational Numbers	Concept: Radical Expressions	Concept: Exponents
$\square]$		
Lesson Essential Questions: How do you determine if a number is rational? How do you express rational numbers as fractions and decimals? How do you simplify algebraic expressions? How do you evaluate algebraic expressions?	Lesson Essential Questions: How can you simplify expressions with square and cube roots? How can you solve equations with square and cube roots? How do you estimate irrational square roots? How do you estimate irrational negative square roots?	Lesson Essential Questions: How do you simplify expressions with negative exponents? How do you use the rules of exponents to simplify expressions? How do you simplify exponential expressions with coefficients? How do you write and compare numbers in scientific notation? How do you perform operations in scientific notation? How do you perform operations in scientific notation without a calculator?
Vocabulary: Rational Number, Terminating Decimal, Repeating Decimal, Irrational Number, Algebraic Expression, Algebraic Equation, Exponent, Coefficient, Scientific Notation, Square Root, Perfect Square, Cube Root, Perfect Cube, Absolute Value		

KNOW:	UNDERSTAND:	DO:
Cylinder	How to write, solve, graph, and interpret linear	M08.B-E.3.1.1 Write and identify linear equations in
Cone	equations in one variable as well as apply volume	one variable with one solution, infinitely many
Sphere	formulas of cones, cylinders, and spheres.	solutions, or no solutions. Show which of these
Commutative Property		possibilities is the case by successively transforming
Associative Property		the given equation into simpler forms until an
Distributive Property		equivalent equation of the form $\mathrm{x}=\mathrm{a}, \mathrm{a}=\mathrm{a}$, or $\mathrm{a}=\mathrm{b}$
Additive Identity		results (where a and b are different numbers).
Multiplicative Identity		
Additive Inverse		M08.B-E.3.1.2 Solve linear equations that have rational number coefficients,
Multiplicative Inverse		including equations whose solutions require expanding
Multiplicative Property of Zero		expressions using the distributive property and collecting like terms.
Property of Equality		M08 C-G 3.1.1 Apply
No Solution Infinitely Many Solutions		formulas for the volumes of cones, cylinders, and spheres to solve real-world and mathematical problems. Formulas will be provided.

Name: Unit 2 - One Variable Equations
Course/Subject: Math
Grade: $8^{\text {th }}$ Grade
School District: Central Columbia
Key Learning: Students will be able to write, solve, graph, and interpret linear equations in one variable as well as apply volume formulas of cylinders, cones, and spheres.

Unit Essential Question: How do you write, solve, graph, and interpret linear equations in one variable as well as apply volume formulas of cylinders, cones, and spheres?

Concept: Algebraic Properties	Concept: Solving Equations	Concept: Types of Solutions
Lesson Essential Questions: How do you simplify algebraic expressions using algebraic properties? How do you use the Property of Equality to solve twostep equations? How do you solve equation with rational coefficients? How do find the volume of a cylinder? How do find the volume of a cone? How do find the volume of a sphere? How do you find the volume of composite figures? How do find the radius or height of a 3-D shape?	Lesson Essential Questions: How do you solve an equation with variables on both sides? How do you write and solve linear word problems? How do you solve multi-step equations by combining like terms? How do you solve multistep equations by the Distributive Property? How do you solve multi-step equations with fractions?	Lesson Essential Questions: How do determine if an equation has one, none, or infinitely many solutions?
Vocabulary:		$1 \square$
Cylinder, Cone, Sphere, Commutative Property, Associative Property, Distributive Property, Additive Identity, Multiplicative Identity, Additive Inverse, Multiplicative Inverse, Multiplicative Property of Zero, No Solution, Infinitely Many		

CCSD Curriculum
Course: $8^{\text {th }}$ Grade Math
July 2022

Topic: Unit 3 - Two Variable Equations
Days: 40

KNOW:	UNDERSTAND:	DO:
Constant Rate of Change	How to analyze and describe linear relationships between two variables, using slope as well as write, solve, graph, and interpret linear equations in two variables, using various methods.	M08.B-E.2.1.1 Graph proportional relationships, interpreting the unit rate
Ratio		the slope of the graph. Compare two different proportional relationships
Slope		represented in different ways. Example: Compare a distance-time graph to a
Rise over Run		which of two moving objects has greater speed.
Undefined		M08.B-E.2.1.2 Use similar right triangles
Y-intercept		to show and explain why the slope m is the same between any two distinct points
Linear Relationship		on a non-vertical line in the coordinate plane.
Proportional		M08.B-E.2.1.3 Derive the equation $\mathrm{y}=$
Horizontal Lines		mx for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.
Vertical Lines		
Transformations		M08.B-E.3.1.3 Interpret solutions to a system of two linear equations in two variables as points of intersection of their graphs because points of intersection satisfy both equations simultaneously.
Solution to a System		M08.B-E.3.1.4 Solve systems of two
Intersecting Lines		linear equations in two variables algebraically and estimate solutions by
Parallel Lines		graphing the equations. Solve simple cases by inspection. Example: $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because
Coinciding Lines		$3 \mathrm{x}+2 \mathrm{y}$ cannot simultaneously be 5 and 6 .
Substitution		M08.B-E.3.1.5 Solve real-world and mathematical problems leading to two
Elimination		linear equations in two variables. Example: Given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Name: Unit 3 - Two Variable Equations
Grade: $8^{\text {th }}$ Grade

Course/Subject: Math
School District: Central Columbia

Key Learning: Students will be able to analyze and describe linear relationships between two variables, using slope as well as write, solve, graph, and interpret linear equations in two variables, using various methods.

Unit Essential Question: How do you analyze and describe linear relationships between two variables, using slope as well as write, solve, graph, and interpret linear equations in two variables, using various methods?

CCSD Curriculum
Course: $8^{\text {th }}$ Grade Math
July 2022

Topic: Unit 4 - Geometric Transformations Days: 15

KNOW:	UNDERSTAND:	DO:
Transformation	How to apply properties of geometric transformations to verify congruence or similarity.	M08.C-G.1.1.1 Identify and
Translation		reflections, and translations. Example: Angle measures
Reflections		are preserved in rotations, reflections, and
Rotations		translations.
Dilations		M08.C-G.1.1.2 Given two congruent figures, describe a
Enlargement		sequence of transformations that exhibits the congruence
Reduction		between them.
Scale Factor		M08.C-G.1.1.3 Describe the effect of dilations,
Congruence		translations, rotations, and reflections on two-
Similarity		dimensional figures using coordinates.
Slope Triangles		
Proportional Figures		M08.C-G.1.1.4 Given two similar two-dimensional figures, describe a sequence of transformations that exhibits the similarity between them.

Name: Unit 4 - Geometric Transformations
Grade: $8^{\text {th }}$ Grade

Course/Subject: Math
School District: Central Columbia

Key Learning: Students will be able to apply properties of geometric transformations to verify congruence or similarity.

\(\left.$$
\begin{array}{l}\begin{array}{|l|l|}\hline \text { Lesson Essential Question: } & \text { Lesson Essential Question: } \\
\begin{array}{l}\text { How do you identify congruent parts to congruent } \\
\text { figures? }\end{array} & \begin{array}{l}\text { How do you determine congruent and similar } \\
\text { parts to slope triangles formed from a line? }\end{array} \\
\text { translations? }\end{array} \\
\begin{array}{l}\text { How do you perform and interpret geometric } \\
\text { reflections? }\end{array} \\
\begin{array}{l}\text { How do you perform and interpret geometric } \\
\text { rotations? }\end{array}
$$

How do you identify and perform multiple

transformations?\end{array}\right]\)| How do you perform dilations on a coordinate |
| :--- |
| grid? |\quad| Vocabulary: |
| :--- |
| Transformation, Translation, Reflections, Rotations, Dilations, Enlargement, Reduction,
 Scale Factor, Congruence, Similarity, Slope Triangles, Proportional Figures |

CCSD Curriculum
Course: $8^{\text {th }}$ Grade Math
July 2022

Topic: Unit 5 - Pythagorean Theorem
Days: 11

KNOW:	UNDERSTAND:	DO:
Pythagorean Theorem	How to solve problems involving right triangles by applying the Pythagorean theorem.	M08.C-G.2.1.1 Apply the converse of the Pythagorean theorem to show a triangle is a right triangle. Theorem
		M08.C-G.2.1.2 Apply the Pythagorean theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. (Figures provided for problems in three dimensions will be consistent with Eligible Content in grade 8 and below.)

Name: Unit 5 - Pythagorean Theorem
Grade: $8^{\text {th }}$ Grade

Course/Subject: Math
School District: Central Columbia

Key Learning: Students will be able to solve problems involving right triangles by applying the Pythagorean Theorem.

Unit Essential Question: How do you solve problems involving right triangles by applying the Pythagorean Theorem?

Ω

Concept:

Using the Pythagorean Theorem
\square

Lesson Essential Question:

How do you find the distance between two points on a coordinate grid?
How do you use the Pythagorean Theorem to find the missing side of a right triangle? How do you use the Pythagorean Theorem to solve word problems?

How do you use the Converse of the Pythagorean Theorem to prove right triangles?
How do you use Pythagorean Triples to determine the missing side of a right triangle?
Ω

Vocabulary:

Pythagorean Theorem, Hypotenuse, Leg, Converse of the Theorem, Pythagorean Triple

CCSD Curriculum

Course: $8^{\text {th }}$ Grade Math
July 2022

Topic: Unit 6 - Functions

KNOW:	UNDERSTAND:	DO:
Relations	$\begin{array}{l}\text { Define, evaluate, } \\ \text { and compare } \\ \text { functions displayed } \\ \text { algebraically, } \\ \text { graphically, or } \\ \text { numerically in } \\ \text { tables or by verbal } \\ \text { descriptions as well } \\ \text { as represent or } \\ \text { interpret functional } \\ \text { relationships } \\ \text { between quantities } \\ \text { using tables, graphs, } \\ \text { and descriptions. }\end{array}$	$\begin{array}{l}\text { M08.B-F.1.1.1 Determine whether a relation } \\ \text { is a function. }\end{array}$
Function Notation		

functions, each represented in a different way

(i.e., algebraically, graphically, numerically

in tables, or by verbal descriptions).

Example: Given a linear function represented

by a table of values and a linear function

represented by an algebraic expression,

determine which function has the greater rate

of change.

M08.B-F.1.1.3 Interpret the equation y=mx

+b as defining a linear function whose graph

is a straight line; give examples of functions

that are not linear.\end{array}\right\} $$
\begin{array}{l}\text { M08.B-F.2.1.1 Construct a function to model }\end{array}
$$\right\}\)

Name: Unit 6 - Functions
Grade: $8^{\text {th }}$ Grade

Course/Subject: Math
School District: Central Columbia

Key Learning: Students will be able to define, evaluate, and compare functions displayed algebraically, graphically, or numerically in tables or by verbal descriptions as well as represent or interpret functional relationships between quantities using tables, graphs, and descriptions.

Unit Essential Question: How do you define, evaluate, and compare functions displayed algebraically, graphically, or numerically in tables or by verbal descriptions as well as represent or interpret functional relationships between quantities using tables, graphs, and descriptions?

Concept:
Relations and Functions

Lesson Essential Questions:

How do you represent relationships as tables, graphs, and equations?

How do you determine the domain and range from a relation?

How do you determine if a relation is a function?

Concept:

Linear Functions

Lesson Essential Questions:

How do you use a function to create a table and graph? How do you create a table or graph from special function rules? How do you create a function rule from a table or graph?

How do you compare and evaluate linear functions?

How do you determine the increasing, decreasing, and constant intervals from functions? How do you interpret qualitative graphs?

Vocabulary:

Relations, Functions, Domain, Range, Function Notation, Linear Function, Qualitative Graphs

KNOW:	UNDERSTAND:	DO:
Scatter Plot Line of Best Fit Correlation Two Way Tables	How to analyze and interpret bivariate data displayed in multiple representations.	M08.D-S.1.1.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative correlation, linear association, and nonlinear association. M08.D-S.1.1.2 For scatter plots that suggest a linear association, identify a line of best fit by judging the closeness of the data points to the line. M08.D-S.1.1.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. Example: In a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.

Name: Unit 7 - Data Analysis
Grade: $8^{\text {th }}$ Grade

Course/Subject: Math
School District: Central Columbia

Key Learning: Students will be able to analyze and interpret bivariate data displayed in multiple representations.

Unit Essential Question: How do you analyze and interpret bivariate data displayed in multiple representations?

$\begin{aligned} & \text { Concept: } \\ & \hline \text { Data Displays } \end{aligned}$	$\begin{aligned} & \text { Concept: } \\ & \text { Scatter Plots } \end{aligned}$	Concept: Two Way Tables
\sqrt{n}		
Lesson Essential Question: How do you interpret various data displays?	Lesson Essential Question: How do you create scatter plots and make predictions? What are the special cases with scatter plots? How do you write equations for scatter plots?	Lesson Essential Question: How do you create and interpret two-way tables?

Vocabulary:

Scatter Plot, Line of Best Fit, Correlation, Two Way Table

CCSD Curriculum

Course: $8^{\text {th }}$ Grade Math

KNOW:	UNDERSTAND:	DO:
Multiple	How to multiply and factor polynomials using a variety of methods.	A1.1.1.5.1 Add, subtract, and/or multiply polynomial expressions (express answers in simplest form). Note: Nothing larger than a binomial multiplied by a trinomial.
Least Common Multiple		
Factor		
Greatest Common		
Factor		
Polynomial		A1.1.1.5.2 Factor algebraic expressions, including difference of squares and trinomials. Note: Trinomials are limited to the form ax2 + $\mathrm{bx}+\mathrm{c}$ where a is equal to 1 after factoring out all monomial factors. A1.1.1.5.3 Simplify/reduce a rational algebraic expression.
Monomial		
Binomial		
Trinomial		
Constant		
Linear		
Quadratic		
Cubic		
FOIL		
Guess and Check		
Perfect Square		
Trinomial		
Difference of Squares		
Rational Expressions		

Name: Unit 8 - Factoring
Grade: $8^{\text {th }}$ Grade

Course/Subject: Math
School District: Central Columbia

Key Learning: Students will be able to multiply and factor polynomials using a variety of methods.

Unit Essential Question: How do you multiply and factor polynomials using a variety of methods?

Concept:

Characteristics of Polynomials

Lesson Essential Questions:

How do you find the LCM and GCF between two numbers?

How do you find the GCF between two algebraic expressions?

How do you classify and multiply polynomials?

Concept:

Factoring Polynomials

Lesson Essential Questions:

How do you factor polynomials using the GCF?

How do you multiply two binomials using the FOIL method?

How do you factor trinomials using the Guess and Check method?

How do you factor polynomials using special cases?
How do you simplify rational expressions?
How do you multiply polynomials using multiple steps?

How do you apply polynomials to real life problems?

Vocabulary:

Multiple, Least Common Multiple, Factor, Greatest Common Factor, Polynomial, Monomial, Binomial, Trinomial, Constant, Linear, Quadratic, Cubic, FOIL, Guess and Check, Perfect Square Trinomial, Difference of Squares, Rational Expressions

