Course Title: Algebra II

Board Approval Date: 6/2018
Credit / Hours: 1
Reviewed Annually

Course Description:

Abstract

Algebra II is a second-year study of the concepts and structure of Algebra. The course provides students with a more in-depth investigation of several Algebra I topics including the expansion of the real number system, rational expressions, polynomials, factoring, and linear equations/functions. An Algebra II student will also participate in a comprehensive study of several new Algebra topics including irrational and complex numbers, quadratic equations and functions, variation, rational and exponential functions. Students are expected to communicate mathematical concepts and processes using written communication. *Students will need a scientific calculator for this course. Recommended model: TI34II

Learning Activities / Modes of Assessment:

Large group instruction
Tests and Quizzes
Experiments
Teacher Observation
Small group/teamwork
Projects with Rubrics
Journals/Learning Logs

Instructional Resources:

Algebra 2: Prentice Hall Mathematics (2004)
Teacher made materials including Microsoft One Note Digital Notebooks
Ipad Apps including Go Formative, Desmos Graphing Calculator/Activities, Ebackpack, Doceri

Course Pacing Guide

Course: Algebra II Course Unit (Topic) (Days/Periods)	Length of Instruction
1. Unit 1 Algebra 1 Review	20 days
2. Unit 2A Quadratic Expressions and Equations	65 days
3. Unit 2B Quadratic Functions	35 days
4. Unit 3 Radical Expressions, Functions, and Equations	40 days
5. Unit 4 Exponential Expressions, Functions, and Equations	10 days

Total Days: 170 days $* *$ (Note: 10 days for Final Exams \& Review)

Topic: 1 Algebra 1 Review
Days: 20
Subject(s):
Grade(s): $9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}$

Know:	Understand:	Do:
Graphing Lines Writing the Equation of a Line Solving Systems of Linear Equations/Inequalities Graphing Absolute Value Equations/Inequalities	Review Algebraic concepts of single-variable expressions and equations using the order of operations, sets of real numbers, and the properties of real numbers	A1.1.2.1.1 Write, solve, and/or graph linear equations using various methods. A1.1.2.2.1 Write and/or solve a system of linear equations (including problem situations) using graphing, substitution, and/or elimination (Limit systems to 2 linear equations). A1.1.3.2.1 Write, solve, and/or graph systems of linear inequalities using various methods. A1.1.3.1.1 Write or solve compound inequalities and/or graph their solution sets on a number line (may include absolute value inequalities). CC.2.2. HS.C. 2 Graph and analyze functions and use their properties to make connections between different representations. A2.1.3.2.2 Use algebraic processes to solve a formula for a given variable (e.g. solve $d=r t$ for r).

Topic: 1 Algebra I Review
Days: 20
Subject(s):

Key Learning:
Review Algebraic concepts of single-variable expressions and equations using the order of operations, sets of real numbers and the properties of real numbers.

Concept:

Solving/Graphing Absolute Value Equations/Inequalities

Lesson Essential Question(s):
How do you solve an absolute value equation/ inequality? (A)

How do you graph absolute value functions? (A)

[^0]

Page 1 of 1

Topic: 2A Quadratic Expressions and Equations
Days: 65
Subject(s):
Grade(s): $9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}$

Know:	Understand:	Do:
Factoring Quadratic Expressions GCF Quadratic Trinomials Factoring by Grouping Sum/Difference of Cubes Quadratic form Complex Numbers Completing the Square Quadratic Formula	Quadratic equations can be solved using a variety of techniques.	A2.1.3.1.1 Write and/or solve quadratic equations (including factoring and using the Quadratic Formula) A2.1.2.2.1 Factor algebraic expressions, including difference of squares and trinomials. A2.1.1.1.1 Simplify/write square roots in terms of i(e.g. $\sqrt{-24}=2 i \sqrt{6}$). Note: Trinomials limited to the form $a x^{\wedge} 2+b x+c$, where a is not equal to 0 .

Topic: 2A Quadratic Expressions and
Equations
Subject(s):

Key Learning:

Quadratic Equations can be solved by using a variety of techniques.

Concept: Solving quadratic equations by Factoring	Concept: Solving quadratic equations by using the Quadratic Formula	Concept: Solving quadratic equations by Completing the Square
\checkmark -		\checkmark
Lesson Essential Question(s): How can factoring be used to solve a quadratic equation?	Lesson Essential Question(s): How can the quadratic formula be used to solve quadratic equations?	Lesson Essential Question(s): How can completing the square be used to solve quadratic equations? How do you decide which technique to use when solving a quadratic equation?
\downarrow		5
Vocabulary: Zero product property, standard form, perfect square trinomial, quadratic trinomials, cubes, factoring by grouping	Vocabulary: Imaginary numbers, discriminant, simplest radical form, square roots	Vocabulary:

Topic: 2B Quadratic Functions
Days: 35
Subject(s):
Grade(s): $9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}$

Unow:	Do:	
Vertex of a Parabola	Quadratic functions represent a family of curves with complex solutions.	A2.2.1.1.3 Determine the domain, range, or inverse of a relation.
Axis of Symmetry	A2.2.1.1.4 Identify and/or determine the characteristics of an exponential, quadratic, or polynomial function (e.g. intervals of increase/decrease, intercepts, zeros, and asymptotes).	
Standard Form of a Quadratic Function		A2.2.2.1.1 Create, interpret, and/or use the equation, graph, or table of a polynomial function (including quadratics).
Vertex Form of a Quadratic Function	A2.2.2.1.3 Determine, use, and /or interpret minimum and maximum values over a specified interval of a graph of a polynomial, exponential, or logarithmic function.	

Topic: 2B Quadratic Functions
Subject(s):
Key Learning:
Quadratic functions represent a family of
curves with complex solutions.

Concept: Identifying a Quadratic Function	Concept: Graphing Quadratic Functions	Concept: Applications of Quadratics
\checkmark		\rfloor
Lesson Essential Question(s): What are the shape and basic characteristics of a quadratic function? (A)	Lesson Essential Question(s): How do you graph a quadratic function in standard form? (A) How do you graph a quadratic function in vertex form? (A)	Lesson Essential Question(s): How is the concept of maximum/minimum values used in real-world problems? (A) How can you determine when a linear/ quadratic regression model would be appropriate? (A)
〕 」		
Vocabulary: "U" shaped, parabola	Vocabulary: vertex of a parabola, axis of symmetry, relative extrema, standard form, vertex form, translations, dilations	Vocabulary: maximum/minimum, linear regression, quadratic regression, line of best fit

Topic: 3 Radical Expressions, Functions, and Equations Subject(s):

Days: 40
Grade(s): $9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}$

Know:	Understand:	Do:
Rational Exponents Radical Expressions Conjugate Radical Equations Extraneous Solutions Inverse Relations Graphing Radical Functions	Radical functions represent a family of curves. Radical equations can be solved using a variety of techniques.	A2.1.2.1.2 Simplify/evaluate expressions involving positive and negative exponents and/or roots (may contain all types of real numbers - exponents should not exceed power of 10). A2.1.2.1.1 Use exponential expressions to represent rational numbers. A2.1.2.1.3 Simplify/evaluate expressions involving multiplying with exponents (e.g. $x^{6} \cdot x^{7}=x^{\wedge} 13$), powers of powers (e.g. $\left(x^{6}\right)^{7}=x^{42}$), and products of products (e.g. $\left(2 x^{2}\right)^{3}=8 x^{6}$). Note: Limit to rational exponents. A2.1.3.1.2 Solve equations involving rational and/or radical expressions (e.g. $\frac{10}{(x+3)}+\frac{12}{(x-2)}=1$ or $\sqrt{x^{\wedge} 2}+$ $21 x=14$). A2.2.1.1.3 Determine the domain, range, or inverse of a relation. A2.2.1.1.4 Identify and/or determine the characteristics of an exponential, quadratic, or polynomial function (e.g. intervals of increase/decrease, intercepts, zeros, and asymptotes). A2.2.2.1.1 Create, interpret, and/or use the equation, graph, or table of a polynomial function (including quadratics). A2.2.2.1.3 Determine, use, and /or interpret minimum and maximum values over a specified interval of a graph of a polynomial, exponential, or logarithmic function. A2.2.2.1.4 Translate a polynomial, exponential, or logarithmic function from one representation of a function to another (graph, table, and equation). A2.2.2.2.1 Identify or describe the effect of changing parameters within a family of functions (e.g. $y=x^{\wedge} 2$ and $y=x^{\wedge} 2+3$, or $y=x^{\wedge} 2$ and $y=3 x^{\wedge} 2$). A2.1.1.1.1 Simplify/write square roots in terms of i(e.g. $\sqrt{-24}=2 i \sqrt{6}$). Note: Trinomials limited to the form $a x^{\wedge} 2+b x+c$ where a is not equal to 0 . A2.1.1.2.1 Add and subtract complex numbers (e.g. $(7-3 i)-(2+i)=5-4 i)$.

		A2.1.1.2.2 Multiply and divide complex numbers $($ e.g. $(7-3 i)(2+i)=17+i)$.

Topic: 3 Radical Expressions, Functions, and Equations

Key Learning:
Radical functions represent a family of curves.
Radical equations can be solved using a variety of techniques.

Concept:
Complex Numbers

Lesson Essential Question(s):

How do we add/subtract complex numbers??

How do we multiply/divide complex numbers?

Know:	Understand:	Do:
Growth Factor Decay Factor Asymptote Exponential Function/Equation Exponential number "e"	Exponential functions can be used to model real-life applications. Exponential equations can be solved using various techniques.	A2.1.3.1.3 Write and/or solve a simple exponential or logarithmic equation (including common and natural logarithms) A2.1.3.1.4 Write, solve, and /or apply linear or exponential growth or decay (including problem situations). A2.1.2.1.4 Simplify or evaluate expressions involving logarithms or exponents CC.2.2.HS.C. 2 Graph and analyze functions, and use their properties to make connections between different representations. A2.2.2.1.2 Create, interpret, and/or use the equation, graph, or table of an exponential or logarithmic function (including common and natural logarithms). A2.2.1.1.3 Determine the domain, range, or inverse of a relation. A2.2.1.1.4 Identify and/or determine the characteristics of an exponential, quadratic, or polynomial function (e.g. intervals of increase/decrease, intercepts, zeros, and asymptotes). A2.2.2.1.1 Create, interpret, and/or use the equation, graph, or table of a polynomial function (including quadratics). A2.2.2.1.3 Determine, use, and /or interpret minimum and maximum values over a specified interval of a graph of a polynomial, exponential, or logarithmic function. A2.2.2.1.4 Translate a polynomial, exponential, or logarithmic function from one representation of a function to another (graph, table, and equation). A2.2.2.2.1 Identify or describe the effect of changing parameters within a family of functions (e.g. $y=x^{\wedge} 2$ and $y=x^{\wedge} 2+3$, or $y=x^{\wedge} 2$ and $y=3 x^{\wedge} 2$).

Topic: 4 Exponential Expressions, Functions, and Equations

Days: 10
Subject(s):

Key Learning:
Exponential functions can be used to model real-life applications.
Exponential equations can be solved using various techniques.

Unit Essential Question(s):
How can exponential functions be used to represent real-life applications?

Concept: Radical form to Rational Exponent form	Concept: Graphing Exponential Functions	Concept: Solving Exponential Equations
5		
Lesson Essential Question(s): How do we write radical expressions to exponential expressions? How do we evaluate rational exponents?	Lesson Essential Question(s): What are the basic characteristics of an exponential function?	Lesson Essential Question(s): What are the methods for solving exponential equations?
5		
Vocabulary: Index, radicand, exponent	Vocabulary: exponential function, growth factor, decay factor, asymptote	Vocabulary: change of bases formula

[^0]: Vocabulary:
 conjunction, disjunction, vertex

