Course Title: AP Calculus (AB) **Board Approval Date:** 06/16/14 **Credit / Hours:** 1.5 credit **Reviewed Annually**

Course Description:

AP Calculus (AB) is a course offered to students who have a 93 average or better *or* teacher recommendation. This course is designed for the highly motivated student with outstanding mathematical aptitude. Students will be expected to work at the college level in analytic geometry and calculus in preparation for the Advanced Placement Examination in May. If the student does not take the AP exam, the AP designation will be removed from the student's transcript.

*Students will need a TI-89 graphing calculator for this course.

Learning Activities / Modes of Assessment:

Large group instruction Checklists / Teacher Observation Projects with Rubrics Homework Assignments

Tests and Quizzes Small group work Computer simulations

Instructional Resources:

AP* Edition Calculus of a Single Variable (Brooks/Cole, Cengage Learning 2010)

Cou	Course: AP Calculus (AB)					
Course Unit (Topic) (Days/Periods)		Length of Instruction				
1.	Unit #1 Functions and Graphs	10 days				
2.	Unit #2 Limits and Continuity	15 days				
3.	Unit #3 Derivatives	25 days				
4.	Unit #4 Applications of the Derivative	25 days				
5.	Unit #5 Integration	25 days				
6.	Unit #6 Transcendental Functions	25 days				
7.	Unit #7 Applications of the Integral	15 days				
8.	Unit #8 Review for AP Exam	<u>30 days</u>				
Tota	ll Days	170 days				

Topic:	Unit	1 F	unctio	ons	and	Graphs
Subjec	t(s):	AP	Calc	ulus	i (AB)

Know:	Understand:	Do:	
Domain	Real world phenomena can be modeled by using	APC.1	The student will define and apply the properties of elementary functions,
Range	functions and their graphs. Having an understanding of a variety of functions		including algebraic, trigonometric, exponential, and composite functions
Intercepts	and graphs allows us to solve problems in more		and their inverses, and graph these functions, using a graphing calculator.
Degree of a Polynomial	situations that arise.		Properties of functions will include domains, ranges, combinations, odd,
Symmetry			even, periodicity, symmetry, asymptotes, zeros, upper and lower
Composition			bounds, and intervals where the function is increasing or decreasing.
Inverses			
Unit Circle			
Special Triangles			
Slope			
Transformations			
Periodic Functions			
Intersection			

Topic: #1 Functions and Graphs

Subject(s): Math

Days: 10 Grade(s): 12th

Topic:	Unit	2 L	imits	and	Continuity	
Subjec	t(s):	AP	Calc	ulus	(AB)	

Know:	Understand:	Do:	
Limit	The concept of a limit is required in order to	APC.2	The student will define and apply the properties of limits of functions. Limits
Oscillating Behavior	two main branches of calculus: derivatives and		will be evaluated graphically and algebraically. This will include
Infinite Limit	integrals. Determining the continuity of a function		a) limits of a constant;b) limits of a sum, product, and
Asymptotic Behavior	enables us to decide whether it may be differentiated or integrated		quotient;one-sided limits; and
Continuous			 d) limits at infinity, infinite limits, and non-existent limits. *
Discontinuous			*AP Calculus BC will include l'Hopital's Rule, which will be used to
Removable Discontinuity	able Discontinuity		find the limit of functions whose limits yield the indeterminate forms: 0/0 and
Non-removable			∞/∞ .
Discontinuity		APC.3	 The student will use limits to define continuity and determine where a function is continuous or discontinuous. This will include a) continuity in terms of limits; b) continuity at a point and over a closed interval; c) application of the Intermediate Value Theorem and the Extreme Value Theorem; and d) geometric understanding and interpretation of continuity and discontinuity.
		APC.4	 The student will investigate asymptotic and unbounded behavior in functions. This will include a) describing and understanding asymptotes in terms of graphical behavior and limits involving infinity; and b) comparing relative magnitudes of functions and their rates of change.

Days: 15 Grade(s): 12th

Topic: U	nit 3 Derivatives	
Subject(s): AP Calculus (AB	3)

Know:	Understand:	Do:	
Average Rate of Change	Derivatives are used to determine rates of change of various functions. They	APC.5	The student will investigate derivatives presented in graphic, numerical, and analytic contexts and the relationship
Change	applications in Physics and other areas of		between continuity and differentiability. The derivative will be
Derivative	science.		defined as the limit of the difference quotient and interpreted as an
Difference Quotient			instantaneous rate of change.
Local Linearity		APC.6	The student will investigate the derivative at a point on a curve. This will include
Power Rule			a) finding the slope of a curve at a point including points at which the
Product Rule			tangent is vertical and points at which there are no tangents:
Quotient Rule			b) using local linear approximation to find the slope of a tangent line to a
Chain Rule			curve at the point;c) defining instantaneous rate of
Implicit Differentiation			change as the limit of average rate of change; and
Velocity			d) approximating rate of change from graphs and tables of values.
Acceleration		APC.7	The student will analyze the derivative
Higher-Order Derivatives			of a function as a function in itself. This will include
			 a) comparing corresponding characteristics of the graphs of <i>f</i>, <i>f</i>', and <i>f</i>";
			b) defining the relationship between the increasing and decreasing
			c) translating verbal descriptions into equations involving derivatives and
			vice versa; d) analyzing the geometric
			consequences of the Mean Value Theorem;
			e) defining the relationship between the concavity of <i>f</i> and the sign of <i>f</i> "
			and f) identifying points of inflection as
			places where concavity changes

and finding points of inflection.
 APC.9 The student will apply formulas to find derivatives. This will include a) derivatives of algebraic, trigonometric, exponential, logarithmic, and inverse trigonometric functions; b) derivations of sums, products, quotients, inverses, and composites (chain rule) of elementary functions; c) derivatives of implicitly defined functions; and d) higher order derivatives of algebraic, trigonometric, exponential, and logarithmic, functions. *

Topic: #3 Derivatives

Subject(s): Math

Days: 25 Grade(s): 12th

Topic:	Unit	4 Ap	olicatio	ns of the	Derivative
Subjec	t(s):	AP C	alculus	(AB)	

Know:	Understand:	Do:	
Relative Extrema Absolute Extrema	Derivatives are used extensively in the fields of graph theory and optimization. A variety of engineering problems can	APC.8	The student will apply the derivative to solve problems. This will include a) analysis of curves and the ideas of concavity and monotonicity;
Points of Inflection	be solved using derivatives.		b) optimization involving global and local extrema;
First Derivative Test			c) modeling of rates of change and related rates;
Second Derivative Test			d) use of implicit differentiation to find the derivative of an inverse
Horizontal Asymptote			e) interpretation of the derivative as a
Slant Asymptote			including velocity, speed, and
Limits at Infinity			f) differentiation of nonlogarithmic functions, using the technique of
Rolle's Theorem			logarithmic differentiation. *
Mean Value Theorem			
Optimization			
Best-case Scenario			
Feasible Domain			
Critical Values			
Differential			

Topic: #4 Applications of Derivatives

Subject(s): Math

Days: 25 Grade(s): 12th

Торі	ic:	Unit	5 Ir	itegra	ation	
Sub	ject	t(s):	AP	Calc	ulus	(AB)

Know:	Understand:	Do:	
Riemann Sum	Integration is a process by which we can find an accumulation of rates of	APC.10	The student will use Riemann sums and the Trapezoidal Rule to approximate
Integral	change. The process of integration is the inverse of		definite integrals of functions represented algebraically, graphically,
Trapezoidal Approximation	differentiation. A variety of problems can be solved using the integral		and by a table of values and will interpret the definite integral as the
Partition			quantity over an interval interpreted as
Upper and Lower Bounds			interval
Midpoint Rule			$\int_{a}^{b} f'(x) dx = f(b) - f(a).$
Fundamental Theorem of Calculus			Riemann sums will use left, right, and midpoint evaluation points over equal
U-substitution		APC.11	The student will find antiderivatives directly from derivatives of basic
Change of Variables			functions and by substitution of variables (including change of limits
Power Rule		APC.12	for definite integrals). * The student will identify the properties
Indefinite Integral			of the definite integral. This will include additivity and linearity, the
Definite Integral			definite integral as an area, and the definite integral as a limit of a sum as well as the fundamental theorem:
			$\frac{d}{dx} \int_{a}^{x} f(t) d(t) = f(x).$
		APC.13	The student will use the Fundamental Theorem of Calculus to evaluate definite integrals, represent a particular antiderivative, and facilitate the analytical and graphical analysis of functions so defined.
		APC.14	The student will find specific antiderivatives, using initial conditions (including applications to motion along a line). Separable differential equations will be solved and used in modeling (in particular, the equation $y' = ky$ and exponential growth).

Subject(s): Math

Days: 25 Grade(s): 12th

Topic:	Unit 6	Transcendental	Functions
Subjec	t(s): A	P Calculus (AB)	

Know:	Understand:	Do:		
Logarithmic Function	Understanding transcendental functions	APC.9	The student will apply formulas to find derivatives. This will include	
Exponential Function	gives us a broader set of skills for which we can solve problems for which		a) derivatives of algebraic, trigonometric, exponential,	
Inverse Trig Function	we can use derivatives and integrals.		logarithmic, and inverse trigonometric functions;	
Derivative of the Inverse			b) derivations of sums, products, quotients, inverses, and composites	
Completing the square			(chain rule) of elementary functions;	
Slope Field			c) derivatives of implicitly defined functions; and	
Differential Equation			d) higher order derivatives of algebraic, trigonometric,	
Separation of Variables			functions. *	
Initial Condition		APC.11	The student will find antiderivatives directly from derivatives of basic	
Particular Solution			functions and by substitution of variables (including change of limits	
Exponential Growth and			for definite integrals). *	
Decay		APC.13	The student will use the Fundamental Theorem of Calculus to evaluate	
General Solution			definite integrals, represent a particular antiderivative, and facilitate the	
Directly Proportional			analytical and graphical analysis of functions so defined	
Inversely Proportional			functions so defined.	

Subject(s): Math

Days: 20 Grade(s): 12th

Topic:	Unit 7	Application	s of the	Integral
Subjec	t(s): Al	Calculus	(AB)	

Know:	Understand:	Do:	
Irregular Shapes	Integration is a process that allows us to find the	APC.15	The student will use integration techniques and appropriate integrals to
Area Under a Curve	areas of irregular shapes and the volumes of irregular solids. The		model physical, biological, and economic situations. The emphasis will
Area Between Two Curves	integral can also be used to find the average value	any given function.	be on using the integral of a rate of change to give accumulated change or on using the method of setting up an approximating Riemann sum and
Total Distance Traveled	of any given function.		
Displacement			representing its limit as a definite integral. Specific applications will
Disc Method			includea) the area of a region;
Washer Method			b) the volume of a solid with known cross-section;
Volume of Cross-sectional solids			 c) the average value of a function; and d) the distance traveled by a particle along a line. *
Axis of Revolution			
Irregular Solid			
Average Value of a Function			

Topic: #7 Applications of Integration

Subject(s): Math

Days: 15 Grade(s): 12th

Topic: Unit 8 Review for AP Exam	Days: 30
Subject(s): AP Calculus (AB)	Grade(s): 11,12
Subject(s): AP Calculus (AB)	Grade(S). 11,12

Know:	Understand:	Do:
AP Test Format	The AP Calculus Test is	Students will take the AP Exam on the assigned date
Oslavlatan kasati sa Maltinka	graded on a scale of 1	and achieve a score of 3 or higher in order to receive
	through 5. The test has a	college credit.
Choice	points split equally	
Calculator Active Multiple	between a multiple choice	
Choice	and a free response	
	section. There are 45	
Calculator Inactive Free	multiple choice and 6 free	
Response	response questions.	
Coloulator Active Free	Understanding the grading	
Calculator Active Free	rubrics and scoring	
Response	students in improving their	
Grading Rubrics	scores.	
Scoring the AP Test		