Course Title: AP Calculus (AB)
Board Approval Date: 06/16/14
Credit / Hours: 1.5 credit
Reviewed Annually

Course Description:

AP Calculus (AB) is a course offered to students who have a 93 average or better or teacher recommendation. This course is designed for the highly motivated student with outstanding mathematical aptitude. Students will be expected to work at the college level in analytic geometry and calculus in preparation for the Advanced Placement Examination in May. If the student does not take the AP exam, the AP designation will be removed from the student's transcript.
*Students will need a TI-89 graphing calculator for this course.

Learning Activities / Modes of Assessment:

Large group instruction
Checklists / Teacher Observation
Projects with Rubrics
Homework Assignments

Tests and Quizzes
Small group work
Computer simulations

Instructional Resources:

AP*Edition Calculus of a Single Variable (Brooks/Cole, Cengage Learning 2010)

Course Pacing Guide

Course: AP Calculus (AB)

Course Unit (Topic)

(Days/Periods)

1. Unit \#1 Functions and Graphs 10 days
2. Unit \#2 Limits and Continuity 15 days
3. Unit \#3 Derivatives 25 days
4. Unit \#4 Applications of the Derivative 25 days
5. Unit \#5 Integration 25 days
6. Unit \#6 Transcendental Functions 25 days
7. Unit \#7 Applications of the Integral 15 days
8. Unit \#8 Review for AP Exam 30 days

Total Days

Length of Instruction

170 days

Topic: Unit 1 Functions and Graphs
Days: 10
Subject(s): AP Calculus (AB)

Know:	Understand:	Do:	
Domain	Real world phenomena can be modeled by using	APC. 1	The student will define and apply the
Range	functions and their graphs. Having an understanding of a variety of functions		including algebraic, trigonometric, exponential, and composite functions
Intercepts	and graphs allows us to solve problems in more situations that arise.		and their inverses, and graph these functions, using a graphing calculator. Properties of functions will include
Degree of a Polynomial			domains, ranges, combinations, odd,
Symmetry			even, periodicity, symmetry, asymptotes, zeros, upper and lower
Composition			bounds, and intervals where the function is increasing or decreasing.
Inverses			
Unit Circle			
Special Triangles			
Slope			
Transformations			
Periodic Functions			
Intersection			

Topic: \#1 Functions and Graphs
Days: 10
Subject(s): Math
Key Learning: The graph of a function can be determined by its properties.

Unit Essential Question(s):

How can the properties of a function be used to determine

 the shape of a graph?| Concept: Properties of Functions 2.9.11.J, 2.8.11.T, 2.5.11.B, 2.8.11.O, 2.6.11.F | Concept:
 Algebra of Functions
 2.8.11.L, 2.8.11.H, 2.5.11.C, M11.D.3.2.3, M11.D.1.1.1,
 M11.D.2.2.3, 2.9.11.G, 2.8.11.N | Concept:
 Graphs of Functions $\begin{aligned} & \text { M11.D.1.1.1, 2.10.11.A, M11.D.4.1.1, 2.8.11.O, 2.8.11.N, } \\ & 2.9 .11 . \mathrm{G}, 2.2 .11 . \mathrm{F}, 2.8 .11 . \mathrm{H}, 2.8 .11 . \mathrm{Q} \end{aligned}$ |
| :---: | :---: | :---: |
| $\sqrt{3}$ | | |
| Lesson Essential Question(s): What are the properties that can be used to aid in graphing a function? (A) | Lesson Essential Question(s): How can we manipulate functions to use them in a variety of ways? (A) | Lesson Essential Question(s): What are the characteristics of the sine, cosine, and tangent curves? (A)
 What are the characteristics of polynomial, radical, exponential, logarithmic, and rational functions? (A) |
| \longleftarrow | | |
| Vocabulary: domain, range, intercepts, degree of a polynomial, symmetry | Vocabulary: composition, inverses, unit circle, special triangles | Vocabulary:
 slope, transformations, periodic functions, intersection |

Topic: Unit 2 Limits and Continuity
Days: 15
Subject(s): AP Calculus (AB)
Grade(s): 11,12

Key Learning: Find limits graphically, numerically, and analytically. Determine the continuity of a function.

Unit Essential Question(s):

What is the relationship between limits and continuity?

Concept: Limits of Functions M11.D.2.2.3, 2.2.11.F	Concept: Asymptotic and Unbounded Behavior M11.D.1.1.1, 2.8.11.C, 2.2.11.F	Concept: Continuity 2.2.11.F, M11.D.2.2.3
5	5	5
Lesson Essential Question(s): What are some of the difficulties that can arise when attempting to find the limit of a function? (A) How can a limit be found graphically? (A)	Lesson Essential Question(s): What are the analytical techniques which can be used to compute the limit of a function? (A) How can you determine the behavior of a function approaching a point where it is undefined? (A)	Lesson Essential Question(s): How can you prove that a function is continuous? (A) How can you identify the points at which a function is not continuous? (A)
\checkmark	5	5
Vocabulary: limit, oscillating behavior	Vocabulary: infinite limit, asymptotic behavior	Vocabulary: continuous, discontinuous, removable/ nonremovable discontinuity

		APC. 9	and finding points of inflection. The student will apply formulas to find derivatives. This will include a) derivatives of algebraic, trigonometric, exponential, logarithmic, and inverse trigonometric functions; b) derivations of sums, products, quotients, inverses, and composites (chain rule) of elementary functions; c) derivatives of implicitly defined functions; and d) higher order derivatives of algebraic, trigonometric, exponential, and logarithmic, functions. *

Key Learning: Understand the relationship between a derivative, slope, and rate of change.

Unit Essential Question(s):
What is the relationship between a derivative, slope, and rate of change?

Concept: Definition of a Derivative 2.2.11.F, M11.D.3.1.1, M11.C.3.1.2, 2.5.11.B	Concept: Differentiation Techniques 2.5.11.C, 2.5.11.B	Concept: Higher Order Derivatives 2.5.11.C
5	5	5
Lesson Essential Question(s): How can we calculate a derivative using its limit definition? (A) How can we apply the alternate form of the derivative to determine whether a function is differentiable? (A)	Lesson Essential Question(s): How can I calculate derivatives without using the definition? (A) How can we apply derivatives to the concepts of velocity and acceleration? (A) How can we use derivatives to solve Related Rates problems? (A)	Lesson Essential Question(s): What is the purpose of higher-order derivatives? (A)
\square	\square	\square
Vocabulary: average rate of change, instantaneous rate of change, derivative, difference quotient, local linearity	Vocabulary: power rule, product rule, quotient rule, chain rule, implicit differentiation	Vocabulary: velocity, acceleration, higher-order derivatives

Topic: Unit 4 Applications of the Derivative
Days: 25
Subject(s): AP Calculus (AB)

Topic: \#4 Applications of Derivatives
Days: 25
Subject(s): Math
Key Learning: Derivatives can be used to model real-life situations.

Unit Essential Question(s):

Where can instantaneous rates of change be used?

Know:
Riemann Sum
Integral
Trapezoidal Approximatio
Partition
Upper and Lower Bounds

Midpoint Rule

Fundamental Theorem of Calculus

U-substitution

Change of Variables
Power Rule
Indefinite Integral
Definite Integral

Understand: Do:
Integration is a process by which we can find an accumulation of rates of change. The process of integration is the inverse of differentiation. A variety of problems can be solved using the integral.

APC. 10 The student will use Riemann sums and the Trapezoidal Rule to approximate definite integrals of functions represented algebraically, graphically, and by a table of values and will interpret the definite integral as the accumulated rate of change of a quantity over an interval interpreted as the change of the quantity over the interval
b
$\int f^{\prime}(x) d x=f(b)-f(a)$.
a
Riemann sums will use left, right, and midpoint evaluation points over equal subdivisions.
APC. 11 The student will find antiderivatives directly from derivatives of basic functions and by substitution of variables (including change of limits for definite integrals). *
APC. 12 The student will identify the properties of the definite integral. This will include additivity and linearity, the definite integral as an area, and the definite integral as a limit of a sum as well as the fundamental theorem:
$d / d x \int_{a}^{x} f(t) d(t)=f(x)$.
APC. 13 The student will use the Fundamental Theorem of Calculus to evaluate definite integrals, represent a particular antiderivative, and facilitate the analytical and graphical analysis of functions so defined.
APC. 14 The student will find specific antiderivatives, using initial conditions (including applications to motion along a line). Separable differential equations will be solved and used in modeling (in particular, the equation $y^{\prime}=k y$ and exponential growth).

Key Learning: Integration can be described as the limit of the sum of quantities, or antidifferentiation.

Topic: Unit 6 Transcendental Functions
Days: 25
Subject(s): AP Calculus (AB)

Key Learning: We can use calculus to deal with transcendental functions.

Unit Essential Question(s):
What are transcendental functions, and how can we find and use their derivatives and integrals?

Concept: The calculus of transcendental functions 2.2.11.F, 2.5.11.B, 2.5.11.C, 2.5.11.D	Concept: Slope Fields 2.4.11.A, 2.4.11.E, 2.5.11.B, 2.5.11.C	Concept: Separable Differential Equations $\frac{2.2 .11 . \mathrm{C}, 2.2 .11 . \mathrm{F}}{2.11 .11 . \mathrm{C}}, 2.411 . \mathrm{E}, 2.5 .11 . \mathrm{A}, 2 \cdot 5.11 . \mathrm{C}, 2.6 .11 . \mathrm{C},$
\square		5
Lesson Essential Question(s): How do I calculate the derivatives of various transcendental functions? (A) How do I integrate various transcendental functions? (A)	Lesson Essential Question(s): How does an initial condition affect the solution to a differential equation? (A)	Lesson Essential Question(s): When and how can I apply the law of exponential growth and decay? (A) How can the law of exponential growth and decay be applied to authentic situations? (ET)
\checkmark		5
Vocabulary: logarithmic function, exponential function, inverse trigonometric function, derivative of the inverse, completing the square	Vocabulary: slope field, differential equation, direction field, separation of variables, initial condition, particular solution	Vocabulary: exponential growth/decay, Newton's Law of Cooling, general solution, family of functions, directly proportional

Topic: Unit 7 Applications of the Integral
Days: 15
Subject(s): AP Calculus (AB)
Know: Understand: Do:

Irregular Shapes		APC. 15	
Area Under a Curve	areas of irregular shapes and the volumes of irregular solids. The		model physical, biological, and economic situations. The emphasis will
Area Between Two Curves	integral can also be used to find the average value of any given function.		be on using the integral of a rate of change to give accumulated change or on using the method of setting up an
Total Distance Traveled			on using the method of setting up an approximating Riemann sum and
Displacement			representing its limit as a definite integral. Specific applications will include
Disc Method			a) the area of a region; b) the volume of a solid with known
Washer Method			cross-section; c) the average value of a function; and
Volume of Cross-sectional solids			d) the distance traveled by a particle along a line. *
Axis of Revolution			
Irregular Solid			
Average Value of a Function			

Topic: \#7 Applications of Integration
Days: 15
Subject(s): Math
Key Learning: The concept of integration can be applied to a variety of situations in the physical and social sciences.

Unit Essential Question(s):
In what situations would it be appropriate to use integration?

Concept: Area	Concept: Volume	Concept: Average Value of a Function $\begin{aligned} & 2.2 .11 . \mathrm{C}, 2.2 .11 . \mathrm{F}, 2.4 .11 . \mathrm{E}, 2.5 .11 . \mathrm{A}, 2.5 .11 . \mathrm{B}, 2.5 .11 . \mathrm{C}, \\ & 2 \cdot 5 \cdot 11 . \mathrm{D} \end{aligned}$
$\sqrt{5}$		
Lesson Essential Question(s): How can an integral be used to find the area of an irregular shape? (A) What aspects of a function determine whether distance traveled and displacement are the same? (A) What is the difference between finding a definite integral and finding the area between two curves? (A)	Lesson Essential Question(s): How can I use an integral to find the volume of an irregular solid? (A)	Lesson Essential Question(s): How can I use an integral to find the average value of a function? (A)
Vocabulary: irregular shapes, area under a curve, area between two curves, total distance traveled, displacement	Vocabulary: Disc/Washer Method, Shell Method, crosssections, axis of revolution, irregular solid	Vocabulary: Mean Value Theorem for integrals

Topic: Unit 8 Review for AP Exam
Days: 30
Subject(s): AP Calculus (AB)

Know:	Understand:	Do:
AP Test Format	The AP Calculus Test is graded on a scale of 1 through 5. The test has a total of 108 possible points, split equally between a multiple choice and a free response section. There are 45 multiple choice and 6 free response questions.	Students will take the AP Exam on the assigned date and achieve a score of 3 or higher in order to receive college credit.
Choice	Understanding the grading Calculator Active Multiple rubrics and scoring guidelines can aid Choice students in improving their Calculator Inactive Free	
Response		
Calculator Active Free Response		
Grading Rubrics		

