Course Title: APPLICATIONS OF GEOMETRY \&
TRIGONOMETRY
Board Approval Date: 05/19/14
Reviewed Annually
Credit/Hours: 1 credit

Course Description:

This course focuses on mastery of the PA Core Standards for Mathematics. As students progress through this course they will participate in a systematic study of the fundamentals of trigonometry, including discussion of the unit circle, graphing of the six trigonometric functions, solving triangles, and practical applications of trigonometry.

Learning Activities / Modes of Assessment:

Large group instruction	Tests and Quizzes
Laboratory experiments	Checklists / Teacher Observation
Small group work	Projects with Rubrics

Instructional Resources:

Teacher made resources

Course Pacing Guide

Course: Applications of Geometry \& Trigonometry	
Course Unit(Topic)	Length of Instruction (Days/Periods
1. Right Triangle Trigonometry Review	35 days
2. Applications of Trigonometry	45 days
3. Angles and the Unit Circle	45 days
4. Periodic Functions and Graphing	30 days
5. Enrichment	15 days
DAYS TOTAL	170 days

Know:	Understand:	Do:
2.5.G.A - Essential PROBLEM SOLVING - Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answermakes sense, and explain how the problem was solved in grade appropriate contexts.	Right triangles have a broad range of relationships that lead to many applications and uses.	CC.2.3.HS.A. 7 - Apply trigonometric ratios to solve problems involving right triangles. CC.2.3.8.A. 3 - Understand and apply the Pythagorean Theorem to solve problems. CC.2.3.HS.A. 7 - Apply trigonometric ratios to solve problems involving right triangles. CC.2.3.8.A. 3 - Understand and apply the Pythagorean Theorem to solve problems.
2.5.G.B $=-$ Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.		
2.10.G.A - E Essential RIGHT TRIANGLES CONCEPTS AND APPLICATIONS Identify, create, and solve practical problems involving right triangles using the trigonometric ratios and the Pythagorean Theorem.		
2.10.G.B $=$ - Essential TRIGONOMETRIC FUNCTIONS Intentionally Blank		
Pythagorean Theorem/ Converse		

Topic: 1. Right Triangle Trigonometry Review

Topic: 1. Right Triangle Trigonometry Review
Subject(s):

Know:	Do:	
2.10.11.A - RIGHT		
TRIANGLES		
CONCEPTS AND		
APPLLCATIONS -		
Identify, create, and		
solve practical problems		
involving right triangles		
using the trigonometric		
functions and the		
Pythagorean Theorem.		

Topic: Right Triangle Trigonometry Review

Subject(s):

Key Learning: Right triangles have a broad range of relationships that lead to many applications and uses.

Concept: Pythagorean Theorem	Concept: Applications of Pythagorean Theorem	Concept: Special Right Triangles

Lesson Essential Question(s): What can the Pythagorean theorem tell us about triangles? (A)	Lesson Essential Question(s): How can using the Pythagorean theorem help us solve application problems? (A)	Lesson Essential Question(s): What are the relationships of $30-60-90$ and $45-45-90$ triangles? (A)

Vocabulary:	Vocabulary:	Vocabulary:

Concept:	Concept:	Concept: Special Right Triangle Applications SohCahToa

Lesson Essential Question(s): How can special right rules help us solve application problems? (A)	Lesson Essential Question(s): How can the ratios of sine, cosine, and tangent help us find missing parts of right triangles? (A)	Lesson Essential Question(s): How can the three trig functions be used to solve applications problems? (A)
Vocabulary:	Vocabulary:	Vocabulary:

Additional Information:
Attached Document(s):

Vocab Report for Topic: Angles and the Unit Circle	Days: 25
Subject(s):	Grade(s):

Concept: Angles of Trigonometry

standard position initial side terminal side -

Concept: Unit Circle in Degrees

special right triangles -

Concept: Unit Circle in Radians

special right triangles -

Concept: Arc Length

arc-
sector circumference -

Topic: Angles and the Unit Circle

Subject(s):

Key Learning:
The Unit Circle helps us find the trigonometric value of virtually any angle.

Concept: Angles of Trigonometry	Concept: Unit Circle in Degrees	Concept: Unit Circle in Radians

Lesson Essential Question(s): How is an angle created the coordinated plane? (A)	Lesson Essential Question(s): How do the special right triangles help us find the values of sine, cosine, and tangent at particular angles around the unit circle? (A)	Lesson Essential Question(s): How do the special right triangles help us find the values of sine, cosine, and tangent at particular angles around the unit circle? (in radians) (A)
Vocabulary: standard position, initial side, terminal side Vocabulary: special right triangles Vocabulary: special right triangles		

Concept:

Arc Length

Vocabulary:
arc, sector, circumference

Additional Information:
Attached Document(s):

Topic: 2. Applications of Trigonometry

Know:	Understand:	D:
Law of Sines Law of Cosines Heron's Formula Area of Triangles	Evaluating inverse trigonometric functions To solve triangles To find the area of triangles Applications and Modeling	Real Life Applications F.TF. 7 - Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context. G.SRT. 11 - (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces). G.SRT.10-(+) Prove the Laws of Sines and Cosines and use them to solve problems. G.SRT. 9 - (+) Derive the formula $A=1 / 2 \mathrm{ab} \sin (\mathrm{C})$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.

Topic: Applications of Trigonometry	Days: 25
Subject(s):	Grade(s):

Key Learning:
Solving for the area and missing parts of triangles in application problems

Concept: Law of Sines	Concept: Law of Cosines	Concept: Law of Sines and Cosines Applications		
Lesson Essential Question(s): How is the law on sines used to find missing sides and angles of triangles? (A) Lesson Essential Question(s): How is the law of cosines used to find missing sides and angles of triangles? (A) Lesson Essential Question(s): How is the law of sines and cosines used to solve application problems? (A) Vocabulary: Vocabulary:				Vocabulary:
:---				

Concept:	Concept: Area of Triangles Area of Triangle Applications

Lesson Essential Question(s): How is Heron's formula and sine used to find the area of a triangle without base and height? (A)
Lesson Essential Question(s): How can Heron's formula and sine be used to find the area of triangles in application problems? (A)
Vocabulary: heron's formula

Additional Information:

Attached Document(s):

Vocab Report for Topic: Applications of Trigonometry	Days: 25
Subject(s):	Grade(s):

Concept: Area of Triangles

heron's formula -

Trigonometry

Topic: 3. Angles and the Unit Circle

Subject(s):

Know:	Understand:	Do:
Definitions of the 3 trigonometric functions Radian measure Arc length Area of a sector The Unit Circle	Measuring angles in degrees and radians Evaluating the three trigonometric functions. Applications and Modeling	G.C. 2 - Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. G.C. 5 - Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. F.TF. 1 - Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. F.TF. 2 - Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. F.TF. 3 - Use special triangles to determine geometrically the values of sine, cosine, tangent for $n / 3, n / 4$ and $n / 6$, and use the unit circle to express the values of sine, cosines, and tangent for $\mathrm{x}, \mathrm{n}+\mathrm{x}$, and $2 n-x$ in terms of their values for x, where x is any real number. F.TF. 4 - Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

Key Learning:
Use probability and statistics to make predictions and generalizations.

Lesson Essential Question(s):
What is the difference between independent and dependent events? (A)
How can we use statistics to model real life situations? (A)

Vocabulary:
dependent, independent, standard deviation, mean, conditional probability, experimental probability, permutation, combinations

Additional Information:
Attached Document(s):
Vocab Report for Topic: Enrichment
Subject(s):

Concept: Probability and Statistics

dependent-
independent -
standard deviation -
mean-
conditional probability experimental probability permutation -
combinations -

Topic: 4. Periodic Functions and Graphing

	erstand:	Do:
Graphs of the 3 trigonometric functions Patterns and tendencies of Periodic Functions Radian measure	Measuring angles in degrees and radians Interpreting the graphs of the 3 trigonometric functions Evaluating the three trigonometric functions Applications and Modeling	F.TF. 1 - Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. F.TF. 4 - Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. F.TF. 5 - Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. F.IF. 4 - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. F.IF. 7 - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F.IF.7e - Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Subject(s):

Key Learning:
Periodic functions model real life relationships by using the functions, sine, cosine, and tangent.

Concept: Patterns of Periodic Functions	Concept: Applications of Periodic Functions	Concept: Graphing Sine, Cosine, and Tangent

Lesson Essential Question(s): What are the tendencies of periodic functions? (A)	Lesson Essential Question(s): How can we model real life situations with periodic functions? (A)	Lesson Essential Question(s): What are the steps for graphing sine, cosine, and tangent? (A)
Vocabulary: amplitude, frequency, period, maximum, minimum	Vocabulary:	Vocabulary: vertical shift, horizontal shift, asymptote

Additional Information:
Attached Document(s):

Concept: Patterns of Periodic Functions

amplitude -
frequency period maximum minimum -

Concept: Graphing Sine, Cosine, and Tangent
vertical shift horizontal shift -asymptote-

Topic: 5. Enrichment

Probability and Statistics	conditional probability independent vs dependent probability samplespace unions and intersections applications and models combinations and permuations standard deviation	S.CP. 1 - Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). S.CP. 2 - Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. S.CP. 3 - Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. S.CP. 5 - Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer. S.CP. 6 - Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S.CP. 9 - (+) Use permutations and combinations to compute probabilities of compound events and solve problems. S.MD.5.a - Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fastfood restaurant. S.MD. $5-(+)$ Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values. S.MD. 6 - (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). S.MD. 7 - (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). S.ID. 1 - Represent data with plots on the real number line (dot plots, histograms, and box plots). S.ID.2-Use statistics appropriate to the shape of the

Know:
Understand:
Do:
data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

