Course Title: Geometry
Board Approval Date: 4/14/14
Credit / Hours: 1 credit
Reviewed Annually

Course Description:

This course focuses on master of the PA Academic Standards for Mathematics. Geometry may be selected either second or third in the college prep curriculum. This course will allow students to apply their background of algebra to better understand and appreciate the basic structure of Geometry and how it is related to other academic disciplines. Students will improve their thinking skills to solve practical and challenging problems from everyday life. As students progress through this course they will participate in a systematic study of the following topics: points, lines, planes, and angles: deductive reasoning, parallel lines and planes; congruent triangles; quadrilaterals; inequalities of geometry; similar polygons; right triangles; circles; areas of plane figures; areas and volumes of solids; and coordinate geometry.

Learning Activities / Modes of Assessment:

Large group instruction	Tests and Quizzes (Formative and Summative)
Checklists / Teacher Observation	Small group work
Projects with Rubrics	Journals / Write-ups
Note-Taking	Homework

Instructional Resources:

Geometry (Prentice Hall 2004)
Geometer’s Sketchpad V4
ExamView
Scientific Calculator (Ti-30/34 or higher)

Course Pacing Guide

```
Course: Honors Geometry and Geometry
Course Unit (Topic)
1. Tc1 Basic Terms and Definitions
2. Tc2 Reasoning and Proofs
3. Tc3 Parallel Lines and Planes
```

4. Tc4 Triangle Properties
5. Tc5 Triangle Congruence
6. Tc6 Polygons and Quadrilaterals
7. Tc7 Coordinate Geometry
8. Tc8 Similarities and Ratios
9. Tc9 Right Triangles
10. Tc10 Circles
11. Tc11 Area
12. Tc12 Surface Area and Volume
13. Tc13 Enrichment-Constructions and Transformations

Length of Instruction (Days/Periods)

10 days
10 days
12 days
12 days
15 days
15 days
12 days
12 days
18 days
15 days
15 days
15 days
10 days

Curriculum: CCSD CURRICULUM
PENNSYLVANIA

Topic: T1 Basic Terms and Definitions
Subject(s): Math
Date: 6/2022

Know:
Understand: observations, predictions, concepts, procedures, generalizations, ideas, and results. 2.9.G.A - DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.

Common Assessments on what students should know and do in this unit:

Topic: T1 Basic Terms and Definitions
Subject(s): Math

Days: /
Grade(s): 9th, 10th, 11th, 12th

Concept:	Concept:	Concept:
Points, Lines, \&Planes	Segments \&Their Measurements	Angles \&Their Measurements
(Pg 10-12)	(Pg 17, 25-26)	(Pg 27-28)
2.5.G.B \square	2.5.G.B. 2.9.G.A \quad	2.5.G.B. 2.9.G.A \quad

Lesson Essential Question(s): What are the basic terms and their importance to geometry? (A)	Lesson Essential Question(s): How do you compare and contrast lines, segments, rays and angles? (A)	Lesson Essential Question(s): How are angles classified and used in geometry? (A)

Vocabulary: geometry, point, line, plane, space, collinear, coplanar	Vocabulary: line segment, ray, congruent	Vocabulary: vertex, sides of angles, angle, acute angle, right angle, obtuse angle, straight angle

Concept:

Angle Pairs (Pg 96-99)
2.9.G.A

```
Lesson Essential Question(s):
How are the pairs of anales classified? (ET)
```


Vocabulary:

complementary angles, supplementary angles,
vertical angles, linear pairs, adjacent angles

Curriculum: CCSD CURRICULUM

Additional Information:
ruler, protractor, graph/number line paper, dynamic geometric software
Attached Document(s):

Concept:

Points, Lines, \&Planes
(Pg 10-12)
geometry -
point -
line -
plane-
space -
collinear -
points contained in the same line
coplanar - points and lines in the same plane

Concept:

Segments \&Their Measurements
(Pg 17, 25-26)
line segment -
ray -
congruent-

Concept:

Angles \&Their Measurements
(Pg 27-28)
vertex -
sides of angles -
angle-
acute angle -
right angle -
obtuse angle -
straight angle -

Concept: Angle Pairs (Pg 96-99)

complementary angles -
supplementary angles -
adjacent angles-

Topic: T2 - Reasoning And Proofs

Know:
2.5.G.B -- Important
COMMUNICATION -
Use symbols,
mathematical
terminology, standard
notation, mathematical
rules, graphing, and
other types of
mathematical
representations to
communicate
observations,
predictions, concepts,
procedures,
generalizations, ideas,
and results.

2.4.G.A - Essential

REASONING - Write formal proofs (direct proofs, indirect proofs/ proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments.

```
2.4.G.B - Essential
CONNECTIONS - Use
statements, converses,
inverses, and
contrapositives to
construct valid
arguments or to validate
arguments relating to
geometric theorems.
```

2.8.G.B - Essential ALGEBRAIC
MANIPULATIONS -
Use algebraic
representations to solve
problems using
coordinate geometry.

Statements of Logic

Types of Reasoning

Understand:
Do:
By using inductive and deductive logic, there are direct and indirect ways of coming to a conclusion or proving something.
CC.2.3.HS.A. 6 - Verify and apply theorems involving similarity as they relate to plane figures. CC.2.3.HS.A. 3 - Verify and apply geometric theorems as they relate to geometric figures.

Common Assessments on what students should know and do in this unit:

Additional Information:
Attached Document(s):

Concept: Statements of Logic (Pgs. 68-80, 264-265)

hypothesis -
conclusion -
converse -
inverse -
contrapositive -
bi-conditional -

Concept: Types of Reasoning (Pgs. 4-8, 82-93, 265-269)

inductive reasoning -
deductive reasoning -
proof -
direct proof -
indirect proof -
counter-example -

Concept: Constructing Proofs (Pgs. 117, 212-213)
given -
postulate -
theorems -
corollary -

Know:	Understand:	Do:
2.5.G.B -- Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.	Classification and properties of triangles can be determined by their distinct characteristics.	CC.2.3.HS.A. 3 - Verify and apply geometric theorems as they relate to geometric figures. CC.2.3.HS.A. 13 - Analyze relationships between two-dimensional and three-dimensional objects.
2.5.G.A -- Essential PROBLEM SOLVING - Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answermakessense, and explain how the problem was solved in grade appropriate contexts.		
2.4.G.A -- Essential REASONING - Write formal proofs (direct proofs, indirect proofs/ proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments.		
2.9.G.B -- Essential TRANSFORMATIONS AND SYMMETRY Use arguments basedon transformations to establish congruence or similarity of 2dimensional shapes.		

Know:	Understand:	Do:
out the plan, check whether an answer makessense, and explain how the problem was solved in grade appropriate contexts. 2.4.G.A - REASONING - Write formal proofs (direct proofs, indirect proofs/proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments. 2.9.G.B - TRANSFORMATIONS AND SYMMETRY - Use arguments based on transformations to establish congruence or similarity of 2dimensional shapes. 2.9.G.A - DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.		

Common Assessments on what students should know and do in this unit:

Curriculum: CCSD CURRICULUM
Course: Geometry

PENNSYLVANIA
Date: 6/2022

Topic: T4 Triangle Properties

Subject(s): Math

Key Learning: Classification and properties of triangles can be determined by their distinct characteristics.

Concept:
 Triangle Inequalities (Pgs. 273-276)
 2.5.G.A, G.1.3.2.1

Lesson Essential Question(s):
LEQ: What can inequalities tell us about triangles (A)

Vocabulary:
inequality, maximum, minimum, comparison property

Topic: T4 Triangle Properties

Additional Information:
rulers, protractors, manipulatives
Attached Document(s):

Concept:

Classifying Triangles (Pgs. 133)
acute triangle right triangle obtuse triangle scalene triangle isosceles triangle equilateral triangle equiangular triangle regular triangle -

Concept: Triangle Angle Sums (Pgs. 131-133)

interior angle sum remote interior angles exterior angle -
exterior angle sum -

Concept:

Segments of Triangles Pgs. 243-245, 249, 255-259)
median altitude perpendicular bisector angle bisector -midsegmentcentroid altitude, concurrent, point of concurrency, incenter, orthocenter, circumcenter -

Concept: Triangle Inequalities (Pgs. 273-276)
inequality -
maximum -
minimum -
comparison property -

Topic: T3 Parallel Lines and Planes

Days: 12
Subject(s): Math

Know:
Understand: problems using coordinate geometry. 2.4.G.A - REASONING - Write formal proofs (direct proofs, indirect proofs/proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments.

Common Assessments on what students should know and do in this unit:

Topic: T3 Parallel Lines and Planes
Days: 12
Subject(s): Math

Key Learning:
Parallel and perpendicular lines and planes have proven properties based on their slopes.

[^0]Attached Document(s):

Concept: Parallel Lines and Transversals (Pgs. 115-118)

corresponding angles -
alternate-interior angles -
same-side interior angles -
alternate-exterior angles -
transversal -
parallel -
skew -

Concept: Properties and Proofs of Parallel and Perpendicular Lines and Planes (Pgs. 117, 122-125)
proof -
given -
definition -
theorem -
hypothesis -
conclusion -
coplanar, space, intersection -

Concept: Slopes of Lines on a Coordinate Plane (Pgs. 158-161)
slope, linear equations, system of linear equations -

Know:	Understand:	Do:
2.5.G.B - Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results. 2.5.G.A -- Essential PROBLEM SOLVING Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answermakessense, and explain how the problem was solved in grade appropriate contexts. 2.4.G.A -- Essential REASONING - Write formal proofs (direct proofs, indirect proofs/ proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments. 2.9.G.B - Essential TRANSFORMATIONS AND SYMMETRY Use arguments basedon transformations to establish congruence or similarity of 2dimensional shapes.	Classification and properties of triangles can be determined by their distinct characteristics.	CC.2.3.HS.A. 3 - Verify and apply geometric theorems as they relate to geometric figures. CC.2.3.HS.A. 13 - Analyze relationships between two-dimensional and three-dimensional objects. CC.2.3.8.A.2- Understand and apply congruence, similarity, and geometric transformations using various tools.

Know:	Understand:	Do:
out the plan, check whether an answer makessense, and explain how the problem was solved in grade appropriate contexts. 2.4.G.A - REASONING - Write formal proofs (direct proofs, indirect proofs/proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments. 2.9.G.B TRANSFORMATIONS AND SYMMETRY Useargumentsbased on transformations to establish congruence or similarity of 2dimensional shapes. 2.9.G.A DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.		

Common Assessments on what students should know and do in this unit:

Key Leaming: Classification and properties of triangles can be determined by their distinct characteristics.

Unit Essential Question(s):
How can triangle congruency be determined?

Concept:	Concept:
Proving Triangles Congruent (Pgs. 180-182, 186-188,	Using Congruent Triangles (Pgs. 203-204, 224-226,
194-196, 217-218)	210-212)
2.5.G.B, 2.5.G.A, 2.4.G.A, 2.9.G.B. 2.9.G.A, G.1.2.1.1,G.1.3.1.1. G.1.3.2.1-	2.4.G.A, 2.5.G.B; G.1.2.1.3, G.1.2.1.4
,	-5
Lesson Essential Question(s): LEQ: When are triangles congruent? (A)	Lesson Essential Question(s): LEQ: What is CPCTC and how is it used to relate triangles? (A)
1	5
Vocabulary: congruent triangles, SAS, SSS, ASA, AAS, HL, corresponding parts	Vocabulary: corresponding angles, corresponding sides, CPCTC (corresponding parts of congruent triangles are congruent), overlapping

Additional Information:
rulers, protractors, manipulatives
Attached Document(s):

Concept: Proving Triangles Congruent (Pgs. 180-182, 186-188, 194-196, 217-
218)
congruent triangles -
SAS -
SSS -
ASA -
AAS -
HL -
corresponding parts -

Concept: Using Congruent Triangles (Pgs. 203-204, 224-226, 210-
212)
corresponding anglescorresponding sides -
CPCTC (corresponding parts of congruent triangles are congruent) -overlapping

Know:	Understand:	Do:
2.5.G.B - Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results. 2.5.G.A -- Essential PROBLEM SOLVING - Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answermakessense, and explain how the problem was solved in grade appropriate contexts. 2.9.G.B - Essential TRANSFORMATIONS AND SYMMETRY - Use arguments based on transformations to establish congruence or similarity of 2dimensional shapes. 2.4.G.A -- Essential REASONING - Write formal proofs (direct proofs, indirect proofs/ proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments.	The number of sides of a polygon determines its name and its angle sum.	CC.2.3.HS.A. 3 - Verify and apply geometric theorems as they relate to geometric figures. CC.2.3.HS.A.13-Analyze relationships between two-dimensional and three-dimensional objects.

Know:
Understand:
Do:

Topic: T6 Polygons

Days: 15
Subject(s): Math

Know:
Understand: contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments.

Topic: T6 Polygons

Subject(s): Math

Common Assessments on what students should know and do in this unit:

Key Learning: The number of sides of a polygon determines its name and its angle sum.

Additional Information:
manipulatives, calculators
Attached Document(s):

Concept: Classification of Polygons (Pg 13ß14)

regular -
convex -
concave -
quadrilateral -
pentagon-
hexagon -
octagon-
n-gons-

Concept: Interior and Exterior Angle Sums of Polygons
145-146)Interior Angle Sum -
Exterior Angle Sum -
Diagonal -

Know:	Understand:	Do:
2.5.G.A -- Essential PROBLEM SOLVING Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answermakessense, and explain how the problem was solved in grade appropriate contexts. 2.5.G.B - Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results. 2.4.G.B - Essential CONNECTIONS - Use statements, converses, inverses, and contrapositives to construct valid arguments or to validate arguments relating to geometric theorems. 2.9.G.A -- Essential DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.	Each type of qualdrilateral has its own set of specialized properties.	CC.2.3.HS.A. 3 - Verify and apply geometric theorems as they relate to geometric figures. CC.2.3.HS.A.13-Analyze relationships between two-dimensional and three-dimensional objects. CC.2.3.8.A.2-Understand and apply congruence, similarity, and geometric transformations using various tools.

Topic: T7 Quadrilaterals

Know:
Understand:
Do:
2.5.G.A - PROBLEM SOLVING - Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answer makessense, and explain how the problem was solved in grade appropriate contexts. 2.5.G.B COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.
2.4.G.B -

CONNECTIONS-Use statements, converses, inverses, and contrapositives to construct valid arguments or to validate arguments relating to geometric theorems.
2.9.G.A -

DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for

Topic: T7 Quadrilaterals

Know: \quad Understand:
Do: arguments related to geometric relations.

Common Assessments on what students should know and do in this unit:

Key Leaming: Each type of quadrilateral has its own set of special properties.

Lesson Essential Question(s): What are the properties of a trapezoid and kite that make them distinct from parallelograms? (A)

Lesson Essential Question(s): How can you use properties to determine what type of quadrilateral it is? (A)

Vocabulary: base, median, base angles, legs, trapezoid, isosceles trapezoid, midsegment	Vocabulary:

Additional Information:
manipulatives, geo-boards, geometric software
Attached Document(s):

Concept: Classification of Quadrilaterals (Pgs. 289-290)

quadrilateral -
parallelogram -
rectangle -
rhombus -
square -
trapezoid -
kite -

Concept: Parallelograms (Pg 294-297)

diagonal -
opposite sides -
opposite angles -
consecutive angles-
consecutive sides-

Concept: Special Parallelograms (Rhombi, Rectangles, and Squares)
square-
rhombus -
diagonals -
rectangle -

Concept: Trapezoids and other Quadrilaterals
(Pg 320-322, 332)
base-
median-
base angles-
legs -
trapezoid -
isosceles trapezoid -
midsegment-

Know:	Understand:	Do:
2.5.G.B - Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.	Coordinate geometry provides a framework for connecting geometry to algebra.	CC.2.3.HS.A. 7 - Apply trigonometric ratios to solve problems involving right triangles. CC.2.3.HS.A. 11 - Apply coordinate geometry to prove simple geometric theorems algebraically. CC.2.3.8.A. 3 - Understand and apply the Pythagorean Theorem to solve problems.
2.8.G.B - Essential ALGEBRAIC MANIPULATIONS - Use algebraic representations to solve problems using coordinate geometry.		
2.9.G.C -- Essential COORDINATE GEOMETRY - Use techniques from coordinate geometry to establish properties of lines, 2-dimensional shapes.		
2.9.G.B - Essential TRANSFORMATIONS AND SYMMETRY Use arguments based on transformations to establish congruence or similarity of 2dimensional shapes.		

Know:	Understand:	Do:
establish properties of lines, 2-dimensional shapes. 2.9.G.B - TRANSFORMATIONS AND SYMMETRY - Use argumentsbased on transformations to establish congruence or similarity of 2dimensional shapes. 2.9.G.A DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.		

Common Assessments on what students should know and do in this unit:

Key Learning: Coordinate geometry provides a framework for connecting geometry to algebra.

Additional Information:
manipulatives, geometric software, protractor, ruler, calculator, graph paper, geo-board
Attached Document(s):

Concept: Distance on a Coordinate Plane (Pg.

43)

x-coordinate-
y-coordinate -
coordinate plane, distance, length, distance formula -

Concept: Midpoints on a Coordinate Plane (Pgs. 44-45)

Midpoint Formula-

Concept: Proving Figures in the Coordinate Plane (Pgs. 326-329)
Square, Rhombus, Diagonals, Rectangle-

Topic: T9 Similarities and Ratios

Days: 18
Subject(s): Math
Know:

2.5.G.B - Important
COMMUNICATION -
Use symbols,
mathematical
terminology, standard
notation, mathematical
rules, graphing, and
other types of
mathematical
representations to
communicate
observations,
predictions, concepts,
procedures,
generalizations, ideas,
and results.

> 2.5.G.A -- Essential PROBLEM SOLVING Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answermakessense, and explain how the problem was solved in grade appropriate contexts.

2.1.G.C -- Important

 CONCEPTS OF NUMBERS AND RELATIONSHIPS - Use ratio and proportion to model relationships between quantities.
2.9.G.B - Essential

TRANSFORMATIONS AND SYMMETRY Use arguments basedon transformations to establish congruence or similarity of 2dimensional shapes.

Understand:
Similar figures can be used to model real-world applications.
CC.2.3.HS.A. 1 - Use geometric figures and their properties to represent transformations in the plane. CC.2.3.HS.A. 6 - Verify and apply theorems involving similarity as they relate to plane figures. CC.2.3.HS.A. 5 - Create justifications based on transformations to establish similarity of plane figures.
CC.2.3.HS.A. 2 - Apply rigid transformations to determine and explain congruence.
CC.2.3.8.A.2 - Understand and apply congruence, similarity, and geometric transformations using various tools.

Topic: T9 Similarities and Ratios

Know:	Understand:
2.9.G.A - Essential DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.	
Problem Solving with Ratios and Proportions	
Similar Polygons	
Proofs of Similar Triangles	
Theorems Involving Proportions	
Perimeters and Areas of Similar Figures 2.5.G.B - COMMUNICATION -	
Use symbols, mathematical	
terminology, standard	
other types of mathematical	
mathematical representations to	
communicate observations,	
observations, predictions, concepts,	
generalizations, ideas, and results.	
2.5.G.A - PROBLEM	
SOLVING - Develop a	
plan to analyze aproblem, identify the	
problem, identify the information needed to solve the problem, carry	

Know:	Understand:	Do:
out the plan, check whether an answer makessense, and explain how the problem was solved in grade appropriate contexts. 2.1.G.C - CONCEPTS OF NUMBERS AND RELATIONSHIPS - Use ratio and proportion to model relationships between quantities. 2.9.G.B - TRANSFORMATIONS AND SYMMETRY - Useargumentsbased on transformations to establish congruence or similarity of 2dimensional shapes. 2.9.G.A DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.		

Common Assessments on what students should know and do in this unit:

Key Learning:
Similar figures can be used to model real-world applications.

Additional Information:
manipulatives, calculators, rulers, scale drawings, maps
Attached Document(s):

Concept:

Problem Solving with Ratios \&Proportions

Pg416-418
ratio -
proportion -

Concept:

Similar Polygons
Pgs 423-425
corresponding angles corresponding sides -
similar -
scale factor-

Concept:

Proving Triangles Similar
Pgs 432-435
AA -
SAS -
SSS-

Know:	Understand:	Do:
2.5.G.A -- Essential PROBLEM SOLVING Develop a planto analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answermakessense, and explain how the problem was solved in grade appropriate contexts.	Right triangles have a broad range of relationships that lead to many applications and uses.	CC.2.3.HS.A. 7 - Apply trigonometric ratios to solve problems involving right triangles. CC.2.3.8.A. 3 - Understand and apply the Pythagorean Theorem to solve problems. CC.2.3.HS.A. 7 - Apply trigonometric ratios to solve problems involving right triangles.
2.5.G.B - Important COMMUNICATION - Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.		
2.4.G.A -- Essential REASONING - Write formal proofs (direct proofs, indirect proofs/ proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments.		
2.4.G.B - Essential CONNECTIONS-Use statements, converses, inverses, and contrapositives to construct valid arguments or to validate arguments relating to geometric theorems.		

Topic: Tc10 Right Triangles

Know:	Understand:	Do:
2.9.G.A - Essential DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.		
2.10.G.B - Essential TRIGONOMETRIC FUNCTIONS Intentionally Blank		
2.10.G.A -- Essential RIGHT TRIANGLES CONCEPTS AND APPLICATIONS Identify, create, and solve practical problems involving right triangles using the trigonometric ratios and the Pythagorean Theorem.		
Review of Radicals Pythagorean Theorem/ Converse		
Special Right Triangles Trigonometric Ratios		
Applications of Right Triangles 2.5.G.A - PROBLEM SOLVING - Develop a plan to analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answer makessense, and		

Know:
Understand:
Do:
explain how the problem was solved in grade appropriate contexts.
2.5.G.B -

COMMUNICATION -
Use symbols, mathematical
terminology, standard
notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.
2.4.G.A - REASONING

- Write formal proofs
(direct proofs, indirect proofs/proofs by contradiction, use of counter-examples, truth tables, etc.) to validate conjectures or arguments.
2.4.G.B -

CONNECTIONS - Use
statements, converses, inverses, and contrapositives to construct valid arguments or to validate arguments relating to geometric theorems.
2.9.G.A -

DEFINITIONS,
PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for

Know:
Understand: arguments related to geometric relations. 2.10.G.B - TRIGONOMETRIC FUNCTIONS - Intentionally Blank 2.10.G.A - RIGHT TRIANGLES CONCEPTS AND APPLICATIONS - Identify, create, and solve practical problems involving right triangles using the trigonometric ratios and the Pythagorean Theorem.

Topic: Tc10 Right Triangles

Days: 15
Subject(s): Math

Common Assessments on what students should know and do in this unit:

Key Learning: Right triangles have a broad range of relationships that lead to many applications and uses.

Concept: Trigonometric Ratios (Pg. 470-478) 2.10.G.B, 2.5.G.A	Concept: Applications of Right Triangles (Pg. $439-441,482-483)$ 2.10.G.B, 2.5.G.A
¢ ${ }^{5}$	
Lesson Essential Question(s): How do we use the trigonometric ratios to solve right triangles? (A)	Lesson Essential Question(s): How do you use the trigonometric ratios and similar triangles to solve real-life application problems? (ET)
Vocabulary: sine, cosine, tangent, opposite, adjacent, hypotenuse	Vocabulary: Geometric Mean, Angle of Elevation, Angle of Depression

Additional Information:
rulers, manipulatives, calculators
Attached Document(s):

Concept:

Review of Radicals (Radical Packet \& pg 355)
radical -
perfect square square root -
principle root -

Concept: Pythagorean Theorem and its Converse

legs -
hypotenuse-
converse-
Pythagorean Theorem-

Concept: Special Right Triangles(Pgs. 366-369)

30-60-90 -
45-45-90 -

Concept: Trigonometric Ratios (Pg. 470-478)

sine-
cosine -
tangent -
opposite -
adjacent -
hypotenuse-

Concept: Applications of Right Triangles

(Pg. 439-441, 482-483)
Geometric Mean -
Angle of Elevation -
Angle of Depression -

Know:
2.5.G.B -- Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.

2.9.G.A - Essential

 DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations.
2.8.G.B -- Essential

ALGEBRAIC MANIPULATIONS
Use algebraic
representations to solve problems using coordinate geometry.

Terms Related to Circles

Central and Inscribed Angles

Properties of Arcs and Chords

Properties of Tangents and Secants

Understand:
Many relationships exist between a circle and its segments.

Do:
CC.2.3.HS.A. 8 - Apply geometric theorems to verify properties of circles.
CC.2.3.HS.A. 9 - Extend the concept of similarity to determine arc lengths and areas of sectors of circles. CC.2.3.HS.A. 13 - Analyze relationships between two-dimensional and three-dimensional objects. CC.2.3.8.A. 3 - Understand and apply the Pythagorean Theorem to solve problems. CC.2.3.8.A. 2 - Understand and apply congruence, similarity, and geometric transformations using various tools.

Know:	Understand:
Segment Lengths of Intersecting Chords	
2.5.G.B - COMMUNICATION - Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results. 2.9.G.A - DEFINITIONS, PROPERTIES AND RELATIONS - Identify and use properties and relations of geometric figures; create justifications for arguments related to geometric relations. 2.8.G.B - ALGEBRAIC MANIPULATIONS Use algebraic representations to solve problems using coordinate geometry.	

Topic: Tc11 Circles

Subject(s): Math

Common Assessments on what students should know and do in this unit:

Topic: Tc11 Circles
Days: 15
Subject(s): Math

Key Learning: Many relationships exist between a circle and its segments.

Additional Information:
manipulatives, geometric software, protractor, ruler, calculator

Attached Document(s):

Concept: Tangent Lines (Pgs.582-585)

radius -
diameter -
chord -
tangent -
point of tangency, inscribed, circumscribed -

Concept: Properties of Arcs \&Chords (Pgs. 386-389, 590-593)
arc length -
arc measure -
minor arc -
major arc -
semicircle -
chord -

Concept: Circle Angle Types (Pgs.598-601, 607-608)

insribed angle, central angle, intercepted arc, secant -

Concept:

Segment Lengths (Pg. 609)
intersection -

Know:	Understand:	Do:
2.5.G.A -- Essential PROBLEM SOLVING Develop a planto analyze a problem, identify the information needed to solve the problem, carry out the plan, check whether an answermakessense, and explain how the problem was solved in grade appropriate contexts.	Area of geometric figures are determined by properties of the figures.	CC.2.3.HS.A. 8 - Apply geometric theorems to verify properties of circles. CC.2.3.HS.A. 9 - Extend the concept of similarity to determine arc lengths and areas of sectors of circles. CC.2.3.HS.A. 13 - Analyze relationships between two-dimensional and three-dimensional objects.
2.5.G.B - Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.		
2.7.G.A -- Essential CALCULATION OF PROBABILITIES - Use geometric figures and the concept of area to calculate probability.		
Perimeter		
Area of Triangles		
Area of Quadrilaterals		
Areas of Other Polygons		
Areas of Circles and Sectors		

Common Assessments on what students should know and do in this unit:

Key Learning: Area of geometric figures are determined by properties of the figures.

Unit Essential Question(s):
 How is the area of a triangle used to derive the area formulas of other polygons?

Concept: Perimeter (Pg 51-53) 2.5.G.A, 2.5.G.B	Concept: Area of Triangles (Pg $350-351)$ 2.5.G.A	Concept: Area of Quadrilaterals (Pg 348-349) 2.5.G.A
15		
Lesson Essential Question(s): What is perimeter and how is it determined for different geometric figures? (A)	Lesson Essential Question(s): What facts are needed to find the area of a triangle? (A)	Lesson Essential Question(s): In which quadrilaterals can triangles be used to determine a specific area formula? (ET)
15		
Vocabulary: perimeter, circumference	Vocabulary: altitude, base, height	Vocabulary: diagonal

Additional Information:
 manipulatives, calculator

Concept: Perimeter (Pg 51-53)

perimeter-
circumference-

Concept: Area of Triangles

(Pg 350-351)
altitude -
base-
height -

Concept: Area of Quadrilaterals
 (Pg 348-349)

diagonal -

Concept: Area of Other Polygons (Pg 373-375, 380)
apothem-
regular polygon -

Concept: Area of Circles \& Sectors Pg 396-397)

sector-

Concept: Geometric Probability (Pg 402-404)
geometric probability - a model in which you let points or areas represent outcomes.

2.5.G.B - Important COMMUNICATION Use symbols, mathematical terminology, standard notation, mathematical rules, graphing, and other types of mathematical representations to communicate observations, predictions, concepts, procedures, generalizations, ideas, and results.

Surface Nets and Polyhedrons

Surface Area and Volume of Prisms and Cylinders

Surface Area and Volume of Pyramids and Cones

Surface Area and Volume of a Sphere

Ratios of Area and
Volume
2.5.G.A - PROBLEM SOLVING - Develop a
CC.2.3.HS.A. 13 - Analyze relationships between two-dimensional and three-dimensional objects. CC.2.3.HS.A. 3 - Verify and apply geometric theorems as they relate to geometric figures. CC.2.3.8.A.1 - Apply the concepts of volume of cylinders, cones, and spheres to solve realworld and mathematical problems.
CC.2.3.HS.A. 12 - Explain volume formulas and use them to solve problems.
CC.2.3.HS.A. 14 - Apply geometric concepts to model and solve real world problems.

Topic: Tc13 Surface Area and Volume

Topic: Tc13 Surface Area and Volume

Subject(s): Math

Common Assessments on what students should know and do in this unit:

Topic: Tc13 Surface Area and Volume

Key Learning: The surface area and volume of solids are determined by their properties.

Lesson Essential Question(s): How can you determine the algebraic relationships between perimeters, areas, and volumes of similar solids? (A)	Lesson Essential Question(s): How can you derive the formulas for a pyramid andacone? (A)	Lesson Essential Question(s): What is the difference between a prism and a pyramid; a cone and a cylinder? (A)
Vocabulary:	Vocabulary: cube, edges, base, vertices, face, polyhedron, net	Vocabulary: lateral area, surface area, volume, Prism, Cylinder

Topic: Tc13 Surface Area and Volume

Concept:	Concept:
Surface Area and Volume of Pyramids \& Cones	Surface Area \&Volume of a Sphere
Pg 537-540 (surface area)	(Pg 558-560)
Pg 551-554 (volume)	2.5.G.A
5	5
Lesson Essential Question(s): How is the base of a prism or cylinder used to determine its surface area and volume? (A)	Lesson Essential Question(s): What information is needed to find the surface area and volume of a sphere? (A)
\square	\square
Vocabulary: slant height, Pyramid, Cone	Vocabular y: Sphere

Additional Information:
manipulatives, geometric software, protractor, ruler, calculator

Attached Document(s):

Concept: Surface Nets \& Polyhedra (Pg. 512-

513)

cubeedges base vertices -facepolyhedron -net-

Concept:

Surface Area and Volume of Prisms \& Cylinders
Pg 528-531 (surface area)
Pg. 544-547 (volume)
lateral area -
surface area -
volume -
Prism -
Cylinder -

Concept:

Surface Area and Volume of Pyramids \& Cones
Pg 537-540 (surface area)
Pg 551-554 (volume) slant height -
Pyramid -
Cone-

Concept:

Surface Area \& Volume of a Sphere
(Pg 558-560)
Sphere-

[^0]: Additional Information:
 manipulatives, geometric software

